then the conditions (2.8), determining the function A in {(2.7), can be replaced by the conditions

A %- co/t?, 0= (1 — —g—s) Gijei; — T d (t/pa)/dt,

¢c=0, if f<0 o =0, o0
C=1, if f=0, (D>0.

For the computation of small increments of the stresses for a small interval of time from the deforma-
tion rates, instead of Eqs. (2.6)-(2.8), use .can be made of a procedure, proposed in [4], for correction of the
deviator of the stresses. Here the increments of the stresses before correction are calculated using Egs.
(1.11) and (1.16).

Using (1.12), (1.13), (1.15), and (2.6), for a medium with the condition (2.3), the equations of elastoplastic
deformation can be formulated with a more general law of elastic deformation than in (2.6)-(2.8).
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NONISOTHERMAL NONLINEAR WAVES
IN A ROD MADE OF A DISSIPATIVE RUBBERLIKE
MATERIAL

A. 1. Leonov UDC 532.5:532.135

Article [1] discussed in the isothermal approximation, a wave propagating in an elastoviscous rod and
gave a numerical solution to the problem of the impact of a rod of finite length on a rigid barrier. With the
presence of strong geometrical and physical nonlinearities inthe determining equations, waves of very great
intensity can be propagated in the rods, where the effects of nonisothermicity are considerable with the prop-
agation of the waves. The present article is devoted to an investigation of these questions.

1. Basic Equations

With the study of the motion of the rods, as in {1], we shall use a description averaged over the cross
section. The material of the rod is assumed to be incompressible with the density p,.

The equations of the mass balance, momentum, and energy in a trod approximation®” have the form
o .« D o, 2ihy o L(f? —ortfo) =

A (o) =0, Z()+ 5 (7* —ei'f0) =0, -

.0 sy o 9 : T — :

2o f (T =122} + oo fu (U 032y = Z(fo — ) =) F(T—T).
where f is the area of the transverse cross section of the rod; v is the mean velocity over the cross section;

o is the mean normal stress over the cross section (determined as in the homogeneous case, using the condi-
tion of the reversion of the stresses to zero at the free surface of the rod); U is the specific internal energy;

q is the longitudinal heat flux; T is the mean temperature over the cross s_ection of the rod; T, is the tempera-

Moscow. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnichegkoi Fiziki, No. 3, pp. 135-145,
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ture of the surrounding medium; & >0 is the coefficient of lateral heat transfer; x is the longitudinal coordinate;
and t is the time.

To close the system (1.1), equations describing the thermodynamic and rheological behavior of the
medium must be formulated.

Let the rod consist of a dissipative rubberlike material of the type of raw (unlinked) rubber or a polymer
melt. In this case, it can be postulated that iis locally equilibrium thermodynamic state is similar to the
state of linked rubber. We shall use the concept of an "ideal” incompressible rubber [2, 3], for which, in the
approximation under consideration, the specific thermodynamic potentials (the internal energy U, the entropy
S, and the free energy F) are determined by the expressions

U=U)+ (' —Tg), S =8y — (W ok} + ¢ In (T Ty),
(1.2)

F=Fy+4 (en — SHT — To) — . T In (T-Ty) -+ (' T.pok(3),

where A is an Mequilibrium" thermodynamic parameter, determining the elastic (highly elastic) deformation
in the rod. In the case of homogeneous monaxial deformation, the quantity A is the ratio of the length of the
sample at a given moment of time to its length after instantaneous unloading. From this it follows that, for
compraession, 0< A < 1; for elongation, A >1. In (1.2}, ¢' is a constant; here u'T ~E, where E is the Young
modulus; ¢, is the specific heat capacity for A =const, which, over a rather broad interval of temperatures,
can be assumed constant.

The dimensionless function ¥ (A) in (1.2) is some elastic potential. In the case of the potential of the net-
work theory of high elasticity [2]

CA) = A2 - 221 — 3, u o= (1.2)p,Nk, (1.3)
where N is the number of effective molecular chaing in the network per unit of volume; k is the Boltzmann

constant.

The potential (1.3) describes rather well the mechanical properties of rubbers with not too great elonga-
tions A < 2-3. For very large values of A, an empirical potential [4], describing well the mechanical properties
of rubbers with large deformations, must be used:

G = (2 W) 2hmn2 — 3) = (B ) (M 20mn,? — B, (1.4)

where n, b, and m are positive empirical constants.

The qualitative dependences of the potential 3 (\) and its first three derivatives, in accordance with
formulas (1.3} and (1.4) (dashed and solid lines, respectively), are shown in Fig. 1, from which it can be seen
that, for A =\, where A% is a point of inflection of  '(A) for the potential (1.4), the classical potential
describes the results of experiment with qualitative correctness.

An investigation of the simplest equations of viscoelastic media in the presence of arbitrary finite elastic
deformations was made by the methods of nonequilibrium thermodynamics in [5, 6]. In the case of monaxial
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elongation— compression, these equations, taking account of the specific properties of polymeric elastoviscous
media, have the form

6 =0, )+ (A D2, g=—x(h NI (x>0); (1.5)
Lo, A, @) ar
T(ar-’ ”&)*ssom = (1.6)

where oA, T) is the "equilibrium" stress; £ (A, T) is the "Kelvin® viscosity, rising sharply with a rise in A

{or A1) and falling sharply with a rise in T; % is the coefficient of thermal conductivity. The second expression
in (1.6) is the "kinematic resistance," where ¢(A)/166y(T)] is the rate of the irreversible deformations. Under
these circumstances, as followa from {5, 6],

Go(hs T) = poh g-)’—\T =W Ty (2),
@ (h) = — B-h 5 exp {— L b (1) + (Y1, @
8, (T) = O’ exp (AE/RT).

where 84(T) is the characteristic relaxation time; AE is the activation energy; R is the gas constant; 8'is a
constant; and the quantity 8(0< f< 1) is a numerical parameter, taking account of the flexibility of the polymer
chains.

For the investigation of waves of great intensity, in the determining equations (1.5) and (1.6) and in the
energyeqxiaﬁon [1.1] we shall omit the viscous term inthe stress£dv/9x and the term q =—#13T/0x, describing the
longitudinal thermal conductivity, since outside of rather narrow zones where these quantities are small, and
zones where these quantities are very great, they will be replaced, as in {1}, by the surfaces of strong and weak
discontinuities. ‘

Thus, in what follows, in (1.1) and (1.5) we shall assume that
o =04\, T), Eh, T)=0, ¢g=0, (1.8)
which corresponds to the nonlinear Maxwell rheological equations, used in the isothermal case in [1].

From (1.1) we can obtain an equation for the balance of the specific internal energy U, which, taking
account of the expression for U from (1.2), has the form of the temperature balance:

peci {0 T3z + 3(fuT) 8z} = ofdv.0x — al J(T — Ty). (1.9)

The first term in the right-hand side of (1.9) is the power of the stress in the total deformation rate and,
generally speaking, is not positively determinable.
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If along with (1.6) we use the well-known formula (c; is the heat capacity at constant stress)

—, 00 {1.10)
[ p—C'_{‘c;V')TIGA

we can obtain an expression for the entropy halance (with the exception of cross sections with strong discon-
tinuities), which can also be represented in the form of the temperature balance:
Poca(RY{B(T)OE - 3(fuT)/ 0z} = of(h).604(T) — a VAT — Ty). (1.11
Under these circumstances, from (1.10), taking account of (1.7) and {1.8), we obtain
colen = Ly S(A) (v = 1pecs).

The first term in the right-hand side of (1.11) represents the dissipation and is positively determined.
For the polymer materials under consideration, the value of ¥ is very small (y~10~%).

We note also that formula (1.8) can be written in "divergent™ form:

R (1.12)
e Ul e ooo(r)

(75

The formulas of the present and following sections as 3~ (3 —~=) degcribe the motion of incompressible
ideally elastic rubber in a rod approximation.

2. Weak Discontinuities for the Propagation of Waves

in an Elastoviscous Rod

For the closed system of equations (1.1), (1.2), (1.7}, and (1.12), taking account of (1.8), the characteristic
roots have the form

Qy,e == Uk Us, oy == U,

(2,1)

2 o2
Uz = U -

] —tay O 700
C—— Uy = 0 ‘/~2~——.—
poc; T T ar

where ug and up are, respectively, the adiabatic and isothermal velocities of sound in the deformed material.
Here ug>uyp if A = 1, and ug=ugp=uy(T) for A =1, i.e., in the undeformed rod. Here
S7 5T g UT =g
wi (1) = pg ' E(T), F(T)=3nyT. (2.2

NAXM

As follows from (1.7, ( )

dynamic instability for the poten’aal F and assures the hyperbolic character of the system of equations under
consideration.
From (1.7, (2.1), and (2.2) we have
7 22 u
1 gn qr(}‘)’ us ::;7-{‘1 - r\i— } Y=g 2 - (2'3)

o )r
ug Pot;

= Icnw

The characteristic roots ay for the hyperbolic system coincide with the rates of the propagation of a
weak discontinuity x'« (). Using, in addition to the system of equations under consideration, the kinetic
conditions for compatability, we can obtain an equation interconnecting the dynamic quantities at a weak dis-
continuity xy t:

Fahu®lhi) b0 C b 50 (T — T . (2.4)

’*(l*“‘l )dl* - g (74057 4)

ST @t RN T QBT I o, T oo, T

where f, =flx, (t),t]; the other quantities are defined analogously. In an isothermal approximation, where T, =
Ty = const, from (2.4) it follows [1] that

@y 4 dlf0.) | fhaTheddon
Fulve —z “)_E:_Tpo di 7 Bpg8,  dhs 0.

3. Shock Waves in an Elastoviscous Rod

In the system of equations (1.1), (1.2), (1.7), and (1.12), taking account of (1.8), as has already been noted
for the isothermal approximation in (1], strong discontinuities can exist (this system recalls the equations of
gasdynamics, where the role of the density is played by the area of the cross section f). Under these circum-
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stances, the structure of the shock wave, along with the zone of inhomogeneity of the stresses in the trans-
verse cross section noted in [1], is also determined by the phenomena of longitudinal thermal conductivity and
the presence of a viscous component of the stress in (1.5).

Let xg(t) be the line of a strong discontinuity in the plane x, t. We select the direction of the x axis so
that x'4>0. We shall denote by the subscript 1 all quantities ahead of the shock wave (x=x;~0) and by the
subscript 2 all quantities behind the shock wave (x=x;+ 0). The conditions at the shock waves for the above
system of equations have the form

Lo — )] = 0. pd (v =] =107}
1o —ai)] = 0. o1 —20) [T+ 5| = 11001,

where the standard notation is adopted for the shock wave, [yl=y; — ¥4

(3.1

The first equality in (3.1) corresponds to the conservation of the flow of mass with a passage through
the shock wave, the second to conservation of the flow of momentum, the third to the conservation of the flow
of elastic deformation, and the fourth to the conservation of the energy flux.

We note that, in a fixed system of coordinates, the flow of mass j< 0. Since f; >0, it follows from this
that

it = —a2<0 (i=1, 2. (3.2)
From (3.1) the following relationships can be obtained:
HidM = foha; (3.3)
. . A2 {o/3] o 3
(xo-—-v,- =-Eo——l-ﬂ— (l=1,2), ( '4)
0o[U1 = pocr [T] = (1/2)[A}(01/A; + Galhs). (3.5)

Relationship (3.3) shows that the passage through the shock wave is accompanied by purely elastic de-
formation.

From (3.4), using (3.2), we have

- [o7A] (3.6)
{UI - [)”] Vpo[}\_} ‘
Here, from (3.4) and (3.6) there follows the alternative
[o/Al< 0, [M< 0, []> 0; (3.7
[o/A]l> 0, M >0, [vl<< 0. (3.8)

The inequalities (3.7), usual for gasdynamics, characterize compression shock waves and are satisfied
for the rubberlike materials under consideration, as will be shown below, in the region of compression (A< 1)
and moderate degrees of elongation. In the region of very large elongations (A>>1), for rubberlike materials
the inequalities (3.8) may obtain, characterizing elongation waves.

From (3.5), taking account of the first equality of (1.7), it follows that

2+ YAy (3.9)

Ty *
2— y(Myy

T,

and we also have the Hugoniot relationship,

% (2 pIA) = =2 (24 Y [M -

koo Ny
Here and in what follows ¢'7? = (d"§ dA"p=; (i ==1,2)
Using (1.2) and (3.9), we obtain an expression for the discontinuity of the entropy [S] at the shock wave:
(2 v
sl VNN (3.10)
o s Ve

Formulas (3.9) and (3.10) show that for the dependences §(A) given in Fig. 1, the possible region of the
existence of shock waves has finite boundaries: 0<A<A<A,, where A_or A, depend on the parameter A,
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{or X,) ahead of (or behind) the shock wave. AsA A, where expressions (3.9) and (3.10) become unbounded,
the postulation that the heat capacity ¢, is constant beccmes untrue, and for the thermodynamic potentials in
(1.2) there is a more complex dependence on the teroperature.

For shock waves of small intensity, from (3.120) we have

(S

<.

g P (8T = 3y = v24) +— O (IA]Y)-

As a result of the dissipative character of the shock waves, [S]>0. As follows from Fig. 1, for A ;<
Ay, wehave ¢ ™, < 0. Then (in view of the smallness of y), waves of small intengity can be shock waves for
A<y only if A]< 0 (compression waves). For A >Asx we have y™,;>0, and waves of small intensity can be
shock waves only for [A]>0.

The results of an analysis of the behavior of [S] with arbitrary values of [A] as a function of Ajand A,
are shown qualitatively in Fig. 2 for the real potential ¢ (A} shown in Fig. 1 by the continuous lines. We
consider two cases separately.

In the first case, where loading waves are being considered, it is convenient to study the dependence of
[S] on A, for fixed values of A ; (Fig. 2a-c).

In the second case, where unloading waves are being studied, it is convenient to study the dependence of
[8] on Ay for fixed values of &, (Fig. 2a'-c").

Here, for the plots of Fig. 2, use was made of the antisymmetry of the function [S]=g(A, A,), i.e.,
gy, AP =—g(A 4, A,), which follows directly from (3.10).

In addition to the physical condition for the existence of shock waves, [S]> 0, in the situation under con-
sideration, where y™(\) changes sign, the question of their stability must still be examined [7, 8].

The shock wave will be stable if the following inequalities are simultanecusly satisfied:

Ug << x9 < Us,, (3.11)

since only in this case will small perturbations behind the shock wave overtake it and supply energy to it,
while small perturbations ahead of the shock wave, moving more slowly than it, cannot take energy away from
the shock wave.

From formulas (2.1)-(2.3) and (3.4), the following relationships can be obtained:

2--vIMY; 9
3n yey |A] 6_3;[‘5‘]"
2+ v 5
Vaig i, Ok

(20 = 3)> — (us, — vy *= — Kud (T3)
(3.12)

(us, — va)* — (w0 — 22)" = AU (T,

From (3.12) it follows that the conditions for stability (3.11) will be satisfied if the following relationships
hold:; .

sgn {;‘;—_ [S]} = sgn [A], sgn {r—i—l [S]} = — sgn[A]. (3.13)

Let us now examine the question of the existence and stability of loading and unloading shock waves,
propagating along rods made of a rubberlike material,

The dependence of [S] on A, for A < A, and for the real potential y(\) is illustrated qualitatively in
Fig. 2a and the dependence of [S] on A for Ay< A, in Fig. 2a'. Here A, is a point of inflection on the depend-
ence P'(A) (see Fig. 1),

As can be seen from Fig. 2a, loading shock waves exist in this case ([S]>0) for A,< A, [compression
shock waves, for which the inequalities (3.7) are satisfied], andexist also for A,>A{>A ; [elongation shock waves,
for which the inequalities (3.8) are satisfied]. As follows from (3.13), both of these types of shock waves are
stable. In the interval A ;=A,=<2Y, there exist only weak isentropic loading waves.

From Fig. 2a' it can be seen that unloading waves exist only in the region Ag< A< Ag. However, for
Ay< A <A, [where A is the point of the maximum [S](A,) '7\2= const], as follows from (3.13), they are stable,
and, for A ;<A< Ag, they are unstable. Thus, unloading shock waves actually exist only in the interval

o]
o
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A< Ay <Am. Outsidethisinterval, there exist only weak isentropic unloading waves, Stable shock waves and
weak loading and unloading waves are shown in Fig, 2 by the heavy lines.

Only stable loading shock waves exist for A;=AJ~ A, (see Fig. 2b). Here, ifA,<A,, these are com-
pression waves with satisfaction of the inequalities (3.7); if A5 >A , they are elongation shock waves with the
satisfaction of inequalities (3.8). Only weak isentropic unloading waves exist for A,=A}~A, (see Fig. 2b").

The dependence of [S] on A, for a fixed value of A;>A, is shownin Fig. 2c. Stable loading shock waves
exist for A,< A‘i [compression shock waves with the satisfaction of inequalities (3.7)] and for A,> A [elongation
shock waves with satisfaction of the inequalities (3.8)]. In the interval A{< A, <A, there exist only weak
isentropic loading waves.

Shock unloading waves for A,>Ay exist, as is shown in Fig. 2¢', in the interval AJ< A ;< A,. However,
they are stable, as follows from (3.13), only in the interval A <A ;< A,, where A ;) is 2 maximum on the
dependence [S] (A) l;\2= conste Outside this interval there exist only weak isentropic unloading waves.

Dissipative phenomena (relaxation, heat transfer) can lead to a case where the situations illustrated in
Fig. 2 will vary with the time; in particular, one situation may replace another. In a heat-insulated rod, to
which energy is applied only for the course of a finite interval of time which is very small in comparison with
the time of the existence of the wave, these changes are directed toward the side of a decrease in the intensity
of the waves.

4. Examples

We first consider loading waves, propagating over a homogeneous unloaded rod having a temperature
T; =Ty

In the given case, A ;=1, f;=const, 64=0, T{=T,, and, without limiting the generality, we can assume
that vi=0. This situation is obviously illustrated in Fig. 2a.

From Fig. 2a it follows that, for A,< 1 (A ;=1), there exist compression shock waves. Under these
circumstances, from (3.3)-(3.5) we have

fome 1275, T Ty= {1 — (32) (g — 1) g2},
4.1)

o = 1, (T) ()2 {3nhg (e — 1) (1 - (¥/2) (1 — Ag) 2)}="s, v, = 25 (1 — ho).
Since A,< 1, then $%< 0, and from (4.1) we have
o> i T >Ty, @y >y > g (L) > 0.

For sufficiently smooth initial data, the front of the compression wave in the given case will be twisted,
exhibiting a tendency toward the appearance of a strong discontinuity.

In the region 1< A,< A}, as follows from Fig. 2a, there exist only weak discontinuities; therefore, if the
degree of the initial elongation A ,(0) < ?\‘i, then, even with discontinuous conditions, the front of the wave will
be washed out. ‘

In the region A2>7\({, i.e., with sufficiently large original elongation deformations, as follows from
Fig. 2a, there arise elongation shock waves, irregardless of the smoothness of the original distribution of
‘the sought values. In this case, all the values behind the shock wave will again be described by formulas
(4.1) for Ay>»1. From this it follows that fy< fj, T3> Ty, X' >uy(Ty), and v4< 0.

Dissipative phenomena (relaxation stresses, heat trangfer) behind the front of a shock wave introduce
considerable changes into elongation and compression shock waves with loading. In both cases, relaxation of
the stresses leads to a change in the parameter 7»2'(With compression, A, increases and, with elongation,
decreases). In the case of a compression shock wave, this fall in the intensity continues right up to A,—=1; in
this case, the compression shock wave is retained. In the case of an elongation shock wave, such a fall in the
intensity with the retention of a strong discontinuity exists only up to the moment of time t, , when A 5(ty )
becomes equal to A. For t>ty, A,< A and the shock wave will be washed out due to instability. Thus, in
distinction from a compression shock wave, an elongation shock wave exists only for a finite time ty, then
becoming unstable.

Taking account of lateral heat transfer, lowering the temperature Ty behind the shock wave brings
about an increase (in comparison with adiabatic deformation) in the relaxation time and, as a result of this,
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somewhat slows down the course of the relaxation processes. Nevertheless, the qualitative picture for both
types of loading shock waves under consideration remains valid.

As follows from (4.1), all the values at the shock wave are completely determined by the dependence
A,(t). This dependence is found, as is well known, from the solution of the complete nonlinear boundary-value
problem in the region behind the shock wave. If, behind the front of the shock wave, dissipative phenomena
can be neglected, this problem is made easier. For example, formulas (4.1} yield an exact solution of the
problem of the pulsed compression of a semibounded elastic rod (A ,= const).

Let us now consider unloading waves, propagating over a homogencous loaded rod relaxing under iso-
thermal conditions.

In a purely elastic case (f—= or f—=), A,=1, while A, f;, and T, are known quantities, v;=0, the
situation is illustrated in Fig. 2a', where, in the interval 1< A ;<A , there exist unloading shock waves of an
elongated sample. The relationships at the shock wave have the form

Ta== Iqfy, T:zle“_"\’(;~1“1)¢,1‘f-. (.2)
4.2

SR S iyt
zg = U {T)) 7y l S,y V=0

We note that, according to (4.2), we have T3< Ty. It can be shown that this drop in the temperature is
less than for unloading under isentropic conditions.

Relationships (4.2) constitute an exact solution of the problem for the adiabatic unloading of an elastic
rod, i.e., they describe the distribution of the sought values also behind the shock wave.

Taking account of relaxation phenomena can qualitatively change the picture of all the distributions
behind a shock wave. In the present case, as before, f;=const, T;= const, and v,;=0; however, the value of
A 1(t) is deterrained from the relaxation equation

dhy A () Y (4.3)
gy — 0 M(0) = AL |

This circumstance leads to a situation in which, behind the shock front, some value of the deformation
is formed, A 4(t) < A 4(t), which is determined from a solution of the complete nonlinear dynamic problem as a
whole. For A <A, the relationships at the shock wave are described by the overall formulas (3.3)-(3.6),
taking account of v;=0.

In the case where x'((A D)9, L™1>1 (L is the length of the rod in the deformed state), i.e., the characteris-
tic time of the propagation of a loading shock wave over the rod is less than the relaxation time, we can
write out the principal terms of the asymptotic solution behind the shock wave:

Moo t) & by o= Lola. 8) & 0, = 0, v(z. ) = 1y (), (4.4)

in which the values of f,, Ty, v,, and x*), satisfy (4.2) with A(t) determined from (4.3); for f(x, t) we will obtain
the Cauchy problem
A vyl ~o.f

X3 )

(4.5)

rmxg(f) Talt) == f1hy (),

having the solution

i
F = fiha (@ — a ()} alty = [ oo (vdt, UE) = 25 (t) — al?). (4.6)
0

When x')(A )8,L71¢ 1, formulas (4.4)-(4.6) are unsuitable and we must turn to a numerical solution of the
problem as a whole. The most important fact in the present case is that a zone of compression may arise in
the relaxing rod behind an unloading shock wave. In actuality, if it is postulated that, behind the shock wave,

dfidt = 8f'0t + vofidr >0,

then from the first equation of (1.1) it follows that, behind the shock wave, 8v/9x< 0. The latter canleadto a
situation in which A,< 1, 04< 0, i.e., in some region behind the shock wave there may be relaxation of an
inhomogeneous compressed material.
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We note that the formulas given above, describing unloading shock waves, are valid only if A}< A, (see
Fig. 2a"). In the contrary case, where 7&‘}>7xm, at the start of the unloading process, shock waves will not
exist, and only in a certain time after the start of the unloading process, in a medium with a sufficiently small
relaxation time (or for a very long rod), will the weak wave arising at the start go over into a shock wave,
whose intensity will than fall further with time.
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DISPERSION OF THE VELOCITY AND SCATTERING
OF ULTRASONIC WAVES IN COMPOSITE
MATERIALS

A. A. Usov and T. D. Shermergor UDC 534.514

The scattering of waves at the inhomogeneities of 2 medium can be calculated by various methods. An
analysis of the most frequently used approximations was made in [1, 2]. The scattering coefficient of an ultra-
sonic wave in compositite materials was calculated in [3-6]. In [3], the smallness of one of the components
was assumed, while, in [6], only the asymptote of long and short waves were calculated. An attempt at the
calculation of the scattering coefficient of longitudinal and transverse ultrasonic waves over the whole range
of wavelengths was made in [4, 5]. The calculation was made under the approximation of taking account of
pairwise correlations between the moduli of elasticity and the density. In [4], the calculations were made
using a Gaussian distribution for the coordinate parts of the binary correlation functions, which does not
relate to composite materials, and, in [5], the explicit form of a function enabling a transition from asymptote
of long waves to a short-wave asymptote is not given. In addition, neither of the above-cited pieces of work
took into consideration the distribution of the velocity of the propagating wave.

A caleulation of the scattering coefficient and the dispersion of the velocity of longitudinal waves over
the whole range of wavelengths, with arbitrary concentrations of the components, is given below.

§1. We renormalize the equations of motion using a method developed in [7-9]:

Lyu; =0, Ly = VilingmVm + 00?04,
where u is the vector of the displacement; A ji 1y, is the tensor of the moduli of elasticity; p is the density of
the medium; w is the cyclic frequency.
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